Botanical Gazette

AUGUST, 1893.

Cell union in herbaceous grafting.

JOHN S. WRIGHT.
WITH PLATES XXX AND XXXI.
The plants mainly employed in this study were tomatoes, potatoes and geraniums, although some work was done with actus, tradescantia, and a few other kinds of plants. The entire work was done in the winter and early spring of 1892 , the experiments being performed in the greenhouse attached to the laboratory of vegetable physiology of Purdue University.
Three methods of grafting were employed, inarching, splice tralting and cleft or wedge grafting. It is needless to describe these well known methods here farther than to say that by the inarching method the scion is allowed to remain on the parent stock until union is formed, while by the splice and wedge or cleft methods the scion must from the start sever all connection with the parent and be sustained entirely by the new stock. In plants which are very delicate and of or uncertain union, the inarching method is the surer, though in most cases the cleft and wedge are safe and most convenient.
In all cases the stock and scion were held in place by thin thips of raffia until union was accomplished when they were removed to allow the diameter of the stem to increase.
It is only in certain stages of growth that herbaceous plants may be easily grafted; in quite young plants the tissues are utiot strong enough to survive the injuries inflicted in the operation, while in older parts, those past or nearly past the frowing stage, the union does not take place readily because of the scarcity of meristematic tissue, as union depends upon the active growth of this tissue. In herbaceous grafting the 21-Vol. XVIII-No. 8 .
not crush at the point of yielding. The scions used in tik work were in all cases vigorous growing young tips. In youg plants the stocks were cut close to the ground, in older plats higher branches served the purpose.

In the experiments it was noticed that scions which had grom in vertical position more readily united with stocks which it lowed them to retain their original position. Shortly atter the operation of grafting many scions wilt and remain in 1 drooping state several hours or even a day, but with cats ful attention revive permanently.

Accounts were kept of each graft and when it arrived $\frac{1}{}$ desired age for study the parts at the point of union were cha into small pieces suitable for sectioning, dehydrated in 1 Thomas apparatus and prepared for sectioning by the celloidi method.
'Although all grafts were recorded so that sections might be had showing grafts at various ages and all stages of cell union study of sections showed that in most instances all stages d cell union could be found in a single graft. Longitudinal 2xd transverse sections were made of most grafts, but the log g ? tudinal section seldom showed anything in addition to thit shown by transverse sections. Camera lucida drawing set made of all sections of importance, and in connection mith the slides used for study. A number of these drawings hurt been selected to illustrate this article.

Graft of tomato on tomato. - Two lateral and parallel tomiti branches belonging to separate plants had tangential site each about three-fifths of an inch long, removed from their 2) jacent sides; these cut surfaces were bound firmly togetho with raffia so that similar tissues met. After about for weeks the graft was sectioned for study. The cross sectild showed the line of union marked by a ragged brownish nit which passed with but one interruption entirely across tix stem. In longitudinal section this junction of the two mef bers was marked by rows of small irregular parenchyma with here and there the intervention of a thickened browt wall (fig. I). The sections showed that the cells which til been injured in grafting had died, while those immediato beneath them were stimulated to a vigorous growth formish meristematic tissue in each member, which in its adrast pushed the broken walls of the dead boundary cells into lite forming between the two members of the graft the fragmectir
brown wall noted in the section (fig. $2, l, l$). This brown wall in all the instances observed was unaffected by stains used on the section. As will be seen farther on, this wall tends to disappear with age until at last only a mere trace of its existence is left.
In this case the tangential slices, removed in bringing the stock and scion into shape for grafting, carried with them a part of the woody zone of each internode, so that in crosssection the remaining part appears horseshoe shaped. In binding the scion to stock the tips of these woody rings were bound closely together (fig. 3), but in process of union parenchymatous tissue developed and intervened between the woody zones of the two members, resulting in their wide sepatation, as seen in figs. 2 and 4.
In sections of potato grafted to potato no new points were noted, the union occurring by the process described in the previous case, except that the brown wall which so strongly marks the junction in the case of the tomato was not nearly so prominent.
Potato and tomato graft. - The cross section of a wedge gralt of a potato to a tomato, five weeks old, showed that similar tissues in stock and scion had met in the union. At the time of grafting numerous gaps and small spaces existed between the two members of the graft owing to the irregularities and unevenness of the cut. The parenchyma cells of tock and scion had elongated towards these places, being the direction of least pressure, and had filled up most such cavities, the line of meeting of stock and scion tissues being will. In other places this wall was very ragged and fragPentary due to dead cell walls which had been crowded into line by the growing tissues; shown in fig. 5 .
The growth of the cells in closing up ig. 5 .
of meristematic the cells in closing up gaps is similar to growth lat outside the tissue induced by surface wounds. The cells the severed surface the path the knife elongated in the direction of theo formed surface to double the ordinary dimensions or more, in cross section teries of transverse walls making what appeared lirger walls of which be series of narrow plate-like cells, the imension being equere parallel to the cut surface, the longer they originated. the section the (See figs. 5, II, etc.) At the outer part of ection the central parenchyma of the stock was shown to
have met the cambium of the scion while the cambium of tie stock met the parenchyma of the primary cortex in the scial The union here was easily accomplished through development of meristematic tissue. The section showed the central parenchyma to have been more active in forming a union than was the primary cortex.

In one case where a potato scion had been grafted to tomato stock the central parenchyma of the tomato stock wa bound against soft bast cells of the fibrovascular bundte: The bast cells had swollen as if attempting to enlarge, the cambium of the vicinity began an active growth, and a coer siderable quantity of meristematic tissue intervened betrees the central parenchyma and the bast cells of the fibrovascultr bundle (fig. 6).

In one instance the knife in preparing the parts for grating had removed one side of a cell in the potato scion, whit a cell of the stock had suffered a similar loss, and it happened that the free portions of the severed walls of these two cal were bound end to end. Through continued pressure the tiv partial cells had united, forming a cell twice the normal sith which lived and grew. This large cell, however, threr 1 delicate wall across its middle, forming two cells each of normil size, and providing such a neat union between stock and sion that it was almost impossible to detect it, the path of the knife showing no thickened wall, with but here and thered few fragments of dead walls projecting into the newly formed cell. See fig. 7 .

The graft which presented the above interesting union $2 \sqrt{25}$ showed in an admirable way the action of parenchymacellsiif closing up spaces existing, immediately after the operation between members of the graft.

As previously stated the removal of pressure from one of the cells both stimulates growth and induces elongation the cells in the direction of least resistance. In this grtil the cells had elongated towards the injured surface until tho length was four times their width; delicate walls were th passed transversely across the cells dividing them into ascerp of small cells. These transverse walls appeared near the fird end of the cell at first, and when any variation of size ocurth in the smaller cells, as was often the case, the one most ${ }^{\text {F }}$ mote from the injured surface was the largest. nation revealed, in many instances, delicate young wallsper
ing through the young cells at right angles to their longer axes. The free sides of these growing cells were much more thickened than the others (fig. 8).
The cross section of another graft of potato on tomato showed the central parenchyma of the tomato joined to the soft bast, cambium and fibrovascular bundles of the potato. Although the line of union was marked by a slightly thickened wall, no gaps were present and no development of meristematic tissue occurred. The junction of the two members was 30 neat as to be no more marked than the transition from one tissue to another in the same plant (fig. 9).
Geranium grafts.-Geraniums were grafted to each other with great ease. The action of these cells in effecting union, with occasional modifications, was similar to that seen in previous grafts of potatoes and tomatoes. Thickened brown valls generally marked the junction of the tissues, as in the former grafts; in some instances where gaps existed in this wall the cells of the stock and scion had so grown together as to wholly obliterate the path of the knife. In such places the longer axes of the cells were nearly at right angles to the line of junction (fig. Io).
Geranium and tomato grafts. - Geranium scions were easily united to tomato stocks, the geranium in nearly every instance thriving and increasing in foliage. The tomato scions would in no instance, however, accomplish union with a getanium stock. The repeated trials proved that in respect to graiting the two plants do not act reciprocally. As a parin the relative quantities of sap in tomato and geranium, and stp than the tomato and in addition to this the sap is of greater acidity, so that in grafting osmotic action is set up between the tomato scion and geranium stock in which the tomato loses sap and at a time when it is least able to stand it and consequently perishes; in case of geranium scion and tomato sock the osmotic action would result beneficially to the scion lipplying it with more sap at a time when it was in greatest leed, Cross sections of these grafts showed the geranium to
bave been more Geranium and active in the formation of the union (fig. II). with geranium potato grafts. -Successful grafts were made Previous one the scions to potato stocks. In this case as in the one the geranium was more active in forming the union,
as shown by the cells along the line of junction of the to members (fig. II). In this graft the wall which marked the line of union was thickened but otherwise similar to ordinery cell walls.

Cactus grafts. - Cactus grafts were made, and sections showed the method of union to be essentially like that in the other cases studied. The union occurred in either one orthe other of two ways: long continued pressure holding cell whlt in contact gradually causing them to cohere, or through the development of meristematic tissue by each member.

Grafts of a monocotyledonous plant.- The only monoobt. ledonous plant experimented upon was Tradescantia sebrith which was grafted to itself with great ease; and with mat surprise it was also found to form a true union with a tomith stock. In grafting tradescantia to itself the members of the graft were firmly bound, and healing was rapidly accosplished. The examination of cross sections showed no got eral development of meristematic tissue so prominent it previously described grafts. Those parts of boundary col walls which were on the line of union were very much this ened and from all appearances most of the union had beet effected through long exerted pressure which caused the of walls permanently to cohere. Where gaps or spaces had ex isted however elongation of cells in that vicinity had occurme as in other grafts. Where parenchyma met a fibrovacalut bundle, and a space existed between the two, the parenchyal cells elongated towards the gap and divided, giving rise th new cells until the space was closed and the union acoor plished through pressure of the cell walls as in previous cas

Union of tradescantia and tomato. - In cross section dit graft of tradescantia upon tomato the union was found to x as perfect as any between tomato stock and potato scion. many places tissues of both members gave evidence marked activity in forming union, in others the outlying of border cells were thickened and union here was shomoll have been the result of pressure of the border cell walls uporent other. The tomato was the more active in forming union (fig. 12).

Examinations of callus. - Examinations of callus in tomst and potato slips, which had been placed in damp sand, made in order to see what relation exists between the hed of these external wounds, and of the internal wounds of grtb

The short account here given is from the examination of potato callus, as it showed all the parts clearly. From a longitudinal section it was seen that all the cells injured by the knife died, the parenchymatous tissues immediately beneath were vigorous and were stimulated to renewed growth. Elongation towards the cut surface occurred in the cells, and by forming successive transverse walls each elongated cell gave rise to several small cells, which rapidly inereased in thickness of cell wall, and became rounded. These small cells pushed the dead cells in advance as they grew, and soon enveloped the entire injured tip and extended upward enveloping the sides of the branch with a mass several layers thick. The walls of the callus cells are thicker than those of the parenchyma cells, which give rise to them, and the cell contents are richer in protoplasm. The outer callus cells give rise to root hairs (fig. 13).
At the tip the transition from callus cells through meristematic tissue into ordinary central parenchyma is very gradual. The examination of the tip showed the first stages in the formation of callus to be similar to those in effecting union of tissues by grafting. Hansen, who has carefully studied the formation of callus, regards a cut made in a stem, when vegetative conditions are favorable, as a stimulus to extensive and complex activities. In the cut necessary to grafting we have the stimulus to growth, the parenchyma cells respond to the stimulus by developing meristematic tissue which in most cases effects the union.
More or less true callus may be found in the graft serving to protect injured parts which by reason of their position could never unite. If proper conditions of moisture be present the graft also frequently gives rise to rootlets as does the callus. The union of tissues in the graft and formation of callus is similar. Like causes produce each. One is the healing of an internal the other of an external wound. The callus may exist on the graft, and parenchyma which in one place produces a callosity to protect an exposed injury, in an adjacent locality effects a union between stock and scion, the process in each case being similar.
Summary.-We find that union in herbaceous grafting occars in one of two ways: It is accomplished either by long exerted pressure holding old cell walls together and gradually
ment of meristematic tissue by one or both members of the graft, after which the boundary walls meet and unite throoght pressure, somewhat as in the first case. We generally hare part of the union in any particular case formed by the coherence of the walls of old cells, and the remainder formed by the growth of new cells arising, as in the case of callus, baci of the cells injured by the knife.

Broken walls of the injured cells are thus pushed into lint forming a brownish fragmentary wall marking the junction df the two parts of the graft. This wall tends to disappear with age; the smaller young cells along the junction of the two members enlarge rendering the line of demarkation between the two tissues faint.

In cases where the severed ends of two woody zones met, but were not sufficiently close to allow of union through coherence of cell walls, the two opposite ends of woody zons were enveloped by meristematic tissue arising from the canbium layer on the one side and the central parenchyma ce the other. These two layers of meristematic tissue, metiig each other between the ends of the woody zones united as in the preceding cases, except no fragmentary wall separated them. When such a process occurred we had the woody $z 000$ of the two members of the graft separated by a layer of pro enchymatous tissue similar in general form to a medulay ray. In cases where the woody cells met parenchyma cols for union they were often first enveloped by a growth of the neighboring parenchymatous tissue of the member of the graft to which they belonged.

It may be interesting to account for the transferrence d water from the stalk to the scion. The work of transfertsh water from one part of a plant to another is done largely br woody tissue, parenchyma being unable to do it. If parelchyma intervene between the woody tissues of stalk and stid throughout the graft the water supply of the scion is cut of But this intervention did not occur throughout the grab where successful union was accomplished; while some section did not show direct contact of the woody systems, others d the same graft always disclosed it. In dicotyledonous plats the binding of the graft nearly always brought the ends of to rigid woody rings in direct contact. In grafting of moot cotyledonous to dicotyledonous plants, as in tradescantia al tomato graft the scattered woody bundles of the tradestatis
were often seen in direct contact with the woody cells of the tomato, thus giving opportunity for the transferrence of water from the one to the other.
Naturally one would not expect union between plants of different orders, and the successful grafting of Tradescantia sterina upon tomato and of geranium upon tomato was a surprise. The union of tomato, a dicotyledonous plant, and tradescantia, a monocotyledonous plant, was particularly in: teresting and points to the fact that a similarity in the arrangement of the woody and other tissues is not essential in grafting herbaceous plants.
Opportunity is here taken to thank Dr. J. C. Arthur, of Purdue University, for his kind assistance in the preparation of this article, the work upon which it is based being done under his supervision.

> Botanical Laboratory of Eli Lilly \& Co., Indianapolis, Ind.

Explanation of Plates XXX and XXXI.

Abbreviations used: l, l, line of union; G, geranium; T, tomato; P, potato; Th, tradescantia.
PLitg XXX - Fig i, Long. sec. of T to $T ; n$ young cells formed in process of union. - Fig. 2. Trans. sec. of T to $T ; w, w$, woody zone; $c p, c p$, central parenchyma: $\subset p^{\prime}$ cortical parenchyma; m, young cells.- Fig. 3 . Trans, sec. $T_{\text {to }} T ; w, w$, woody zones; position of w, w, shown at time of grafting.Fig 4 Trans. sec. T to T, showing position of w, w, after graft hat healed - Fig. 5. Trans. sec. P to T, through central parenchyma; n, c, young cells. Trans . Trans. sec. P to $T ; \mathrm{cm}$, cambium tissue; b, bast cells.-Fig. 7 . ments of broke T, through central parenchyma; n, young cell walls; a, frag$P_{\text {to }} T$, showing walls formerly occupying places of n.-Fig. 8 . Trans. sec. "P gaps, $g \rho, g \phi ; l$ growth of tissue and formation of young cells, n, n, in closing wals of bound t, v, young transverse walls dividing young cells; t, t, thickened Pure XXXI
bram layer.-Fig Fig. 9. Trans. sec. P to T; $s b$, soft bast cells; $c m$, cam-distorteder.-Fig. 10. Trans. sec. G to G. $m m$, newly formed cells; $n n_{1}$
 - Fig in $_{13}$ Trans. sec. Td to T; f, b, fibrovascular bundle; n, young cells. Soudle; b, bast cells; callus formation. c, c, c, on potato slip: w, fibrovascular $1 y_{j u r e d ~ i n ~ c u t t i n g ~ t h e ~ s l i p ; ~}^{\text {a }}$, central parenchyma: $b r$, the broken walls of cells trichome arising the slip; k, formation of callus cells by parenchyma cells; tichome arising from callus cells.

